212 research outputs found

    MitoInteractome: Mitochondrial protein interactome database, and its application in 'aging network' analysis

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Mitochondria play a vital role in the energy production and apoptotic process of eukaryotic cells. Proteins in the mitochondria are encoded by nuclear and mitochondrial genes. Owing to a large increase in the number of identified mitochondrial protein sequences and completed mitochondrial genomes, it has become necessary to provide a web-based database of mitochondrial protein information. Results We present 'MitoInteractome', a consolidated web-based portal containing a wealth of information on predicted protein-protein interactions, physico-chemical properties, polymorphism, and diseases related to the mitochondrial proteome. MitoInteractome contains 6,549 protein sequences which were extracted from the following databases: SwissProt, MitoP, MitoProteome, HPRD and Gene Ontology database. The first general mitochondrial interactome has been constructed based on the concept of 'homologous interaction' using PSIMAP (Protein Structural Interactome MAP) and PEIMAP (Protein Experimental Interactome MAP). Using the above mentioned methods, protein-protein interactions were predicted for 74 species. The mitochondrial protein interaction data of humans was used to construct a network for the aging process. Analysis of the 'aging network' gave us vital insights into the interactions among proteins that influence the aging process. Conclusion MitoInteractome is a comprehensive database that would (1) aid in increasing our understanding of the molecular functions and interaction networks of mitochondrial proteins, (2) help in identifying new target proteins for experimental research using predicted protein-protein interaction information, and (3) help in identifying biomarkers for diagnosis and new molecular targets for drug development related to mitochondria. MitoInteractome is available at http://mitointeractome.kobic.kr/.Peer Reviewe

    Peeking at G-protein-coupled receptors through the molecular dynamics keyhole

    Get PDF
    Molecular dynamics is a state of the art computational tool for the investigation of biophysics phenomenon at a molecular scale, as it enables the modeling of dynamic processes, such as conformational motions, molecular solvation and ligand binding. The recent advances in structural biology have led to a bloom in published G-protein-coupled receptor structures, representing a solid and valuable resource for molecular dynamics studies. During the last decade, indeed, a plethora of physiological and pharmacological facets of this membrane protein superfamily have been addressed by means of molecular dynamics simulations, including the activation mechanism, allosterism and, very recently, biased signaling. Here, we try to recapitulate some of the main contributions that molecular dynamics has recently produced in the field

    Quaternary structure of a G-protein coupled receptor heterotetramer in complex with Gi and Gs

    Get PDF
    Background: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. Results: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. Conclusions: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function

    Approaches to Characterize and Quantify Oligomerization of GPCRs

    Get PDF
    Fluorescence resonance energy transfer (FRET) is an approach widely used to detect protein–protein interactions in live cells. This approach is based on the sensitization of an “acceptor” molecule by the energy transfer from a “donor” when there is an overlap between the emission spectrum of the “donor” and the excitation spectrum of the “acceptor” and close proximity between the two fluorophore species (in the region of 8 nm). Various methods exist to quantify FRET signals: here, we describe the application of homogeneous time-resolved FRET (htrFRET) combined with Tag-lite™ technology and its application to determine not only protein–protein interactions but also the capability of GPCR mutant variants to form homomers compared to the wild type GPCR within the plasma membrane of transfected cells

    Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors

    Get PDF
    Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects

    Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In airway epithelial cells, calcium mobilization can be elicited by selective autocrine and/or paracrine activation of apical or basolateral membrane heterotrimeric G protein-coupled receptors linked to phospholipase C (PLC) stimulation, which generates inositol 1,4,5-trisphosphate (IP<sub>3</sub>) and 1,2-diacylglycerol (DAG) and induces Ca<sup>2+ </sup>release from endoplasmic reticulum (ER) stores.</p> <p>Methods</p> <p>In the present study, we monitored the cytosolic Ca<sup>2+ </sup>transients using the UV light photolysis technique to uncage caged Ca<sup>2+ </sup>or caged IP<sub>3 </sub>into the cytosol of loaded airway epithelial cells of cystic fibrosis (CF) and non-CF origin. We compared in these cells the types of Ca<sup>2+ </sup>receptors present in the ER, and measured their Ca<sup>2+ </sup>dependent activity before and after correction of F508del-CFTR abnormal trafficking either by low temperature or by the pharmacological corrector miglustat (N-butyldeoxynojirimycin).</p> <p>Results</p> <p>We showed reduction of the inositol 1,4,5-trisphosphate receptors (IP<sub>3</sub>R) dependent-Ca<sup>2+ </sup>response following both correcting treatments compared to uncorrected cells in such a way that Ca<sup>2+ </sup>responses (CF+treatment <it>vs </it>wild-type cells) were normalized. This normalization of the Ca<sup>2+ </sup>rate does not affect the activity of Ca<sup>2+</sup>-dependent chloride channel in miglustat-treated CF cells. Using two inhibitors of IP<sub>3</sub>R1, we observed a decrease of the implication of IP<sub>3</sub>R1 in the Ca<sup>2+ </sup>response in CF corrected cells. We observed a similar Ca<sup>2+ </sup>mobilization between CF-KM4 cells and CFTR-cDNA transfected CF cells (CF-KM4-reverted). When we restored the F508del-CFTR trafficking in CFTR-reverted cells, the specific IP<sub>3</sub>R activity was also reduced to a similar level as in non CF cells. At the structural level, the ER morphology of CF cells was highly condensed around the nucleus while in non CF cells or corrected CF cells the ER was extended at the totality of cell.</p> <p>Conclusion</p> <p>These results suggest reversal of the IP<sub>3</sub>R dysfunction in F508del-CFTR epithelial cells by correction of the abnormal trafficking of F508del-CFTR in cystic fibrosis cells. Moreover, using CFTR cDNA-transfected CF cells, we demonstrated that abnormal increase of IP<sub>3</sub>R Ca<sup>2+ </sup>release in CF human epithelial cells could be the consequence of F508del-CFTR retention in ER compartment.</p
    corecore